Properties of TiO₂ Films Prepared by the Spray Pyrolysis Method

I. Oja¹, A. Mere¹ M. Krunks¹, C-H. Solterbeck², M. Es-Souni²

¹Tallinn Technical University, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia

² University of Applied Sciences Kiel, Institute for Materials and Surface Technology (IMST), Grenzstr. 3, 24149 Kiel, Germany

Keywords: TiO₂, spray pyrolysis, structure, electrical properties

Abstract. TiO₂ thin films were prepared by spray pyrolysis method. The solution containing titanium(IV)isopropoxide, acetylacetone and ethanol was deposited onto n-type Si(100) and HD Si(100) wafers at substrate temperatures of 315 to 500 $^{\circ}$ C by pulsed spray solution feed. The films were characterized by FTIR, XRD, AFM, ellipsometry, impedance and I-V measurements. As-deposited films prepared below 500 $^{\circ}$ C were amorphous, whereas crystalline films could be achieved at 500 $^{\circ}$ C. Subsequent annealing at 700 $^{\circ}$ C in air led to crystalline anatase formation for films deposited below 400 $^{\circ}$ C. Rutile phase appears in annealed films prepared at a growth temperature above 400 $^{\circ}$ C. Anatase TiO₂ films show refractive index in the range 2.20 to 2.40 and exhibit a relative dielectric constant value of 75 in the range 1 to 100 kHz. Electric breakdown occurs for 120 nm thick film at 250 kV/cm.

Introduction

Thin film processing routes based on sol-gel dip-coating, spray pyrolysis and spin-coating are attractive because they are versatile and cost-effective. Among very interesting thin film materials processed in this way are TiO₂ films which have been deposited by spray pyrolysis for different applications, including gas sensor devices [1], electrodes in solar cells [2] and photocatalysts [3]. The formation and composition of TiO₂ films using Ti-alkoxide as precursors have been studied extensively [1, 4, 5, 6]. Much less attention has been, however, paid to the electrical properties of TiO₂ films deposited by spray pyrolysis technique. This paper reports on the spray-pyrolysis processing, structure, optical and electrical properties of TiO₂ thin films. Particular attention is paid to the effects of preparation conditions such as deposition and annealing temperatures.

Experimental

The precursor solution containing titanium(IV)isopropoxide (TTIP) as a titanium source, acetylacetone (AcAc) as a stabilizer and ethanol as solvent was prepared using AR grade materials from Fluka. TTIP concentration of 6 vol. % and TTIP:AcAc molar ratio of 1:2 were used as starting solutions. The solution was atomized by a pneumatic spray system using compressed air as the carrier. Si (100) (ρ =1.0-30.0 Ω cm) and HD Si (100) wafers (ρ =0.001-0.005 Ω cm) were used as substrates. The films were deposited using a pulsed solution feed at substrate temperatures (Ts) in the range 300 to 500 °C. The pulse consisted of 1 min spray time and 1 min pause; up to 3 pulses were used. Sequential thermal treatment was made for 15 min at 500 °C followed by 30 min at 700 XRD patterns were recorded by a Bruker AXS D5005 diffractometer. °C in air. transmittance spectra of the films on Si (100) wafers in the spectrum region of 4000-400 cm⁻¹ on a Perkin Elmer GX-1 spectrometer. Ellipsometric investigations on a high precision DRE ELX-02C Ellipsometer equipped with a He-Ne laser source (λ = 632.8 nm) were conducted to calculate refractive index and film thickness. Surface morphology was characterized using AFM (SIS, Germany). The Electrical properties of TiO₂ films on HD Si (100) substrates were characterized by a computer controlled Agilent 4192A impedance analyzer. Current-voltage (I-V) measurements

were performed with a Keithley 6517A electrometer. Sputtered Au electrodes with the area of $2.88 \cdot 10^{-7} \text{ m}^2$ were used for contacts.

Results and discussion

FTIR spectroscopic study. IR-spectra of the as-deposited TiO₂ films prepared at different substrate temperatures and the film annealed at 500 °C are given in Fig.1. Strong absorption in the frequency region of 400-1000 cm⁻¹ corresponds to Ti-O-Ti bonding and indicates the formation of a titanium oxide network [6]. As the deposition temperature is increased the absorption band with the maximum close to 440 cm⁻¹, characteristic for TiO₂ anatase state also increases. The absorptions at 1545, 1452 and 1415 cm⁻¹, recorded for the films prepared at temperatures of 300-435 °C, could belong to asymmetrical and symmetrical vibration of M-O-C groups [6, 7] and CH₂ or CH₃ groups, respectively [5]. The absence of above-mentioned absorptions at substrate temperature of 500 °C indicates that relatively pure films could be already exist at this temperature (Fig.1). Annealing at 500 °C leads to significant sharpening of absorption bands in the region of 600-400 cm⁻¹ and clearly indicates the formation of anatase phase, independent of substrate temperature.

Fig.1. FTIR spectra of as-deposited films and annealed film at 500°C.

Annealing at 700 °C results in two important features according to the IR-spectra (Fig.2). The absorption peak close to 1060 cm⁻¹ appears, related to the stretching mode of a Si-O bond [1] and suggests SiO₂ formation at the interface. At the same time the formation of the well resolved peak at 436 cm⁻¹ can be identified for films deposited below 400 °C. The absorptions at 436 and 640 cm⁻¹ belong to the Ti-O-Ti vibration of the anatase phase [1]. The IR-spectrum of the sample prepared at 435 °C shows the absorptions of anatase state and the additional absorption peak at 496 cm⁻¹ can be attributed to the rutile phase. The IR-spectrum of TiO₂ film deposited at 500 °C and annealed at 700 °C clearly shows the absorption peaks at 420, 498 and 678 cm⁻¹ characteristic for rutile [1].

X-Ray Diffraction study. XRD showed the as-deposited films prepared at substrate temperatures below 500 °C are amorphous. The (101) peak of anatase (PDF 21-1272) becomes apparent for the films deposited at 500 °C (Fig. 3). Annealing at 500 °C results in anatase phase regardless of the deposition temperature as the clearly detected (101) and (200) peaks of anatase in XRD patterns confirm. Further annealing at 700 °C has a strong effect on the film structure. The films deposited at 315 °C and 375 °C are composed of the anatase phase and the increase in deposition temperature promotes the appearance of peaks characteristic for rutile phase (PDF 21-1276). The (110) peak of rutile could be detected in addition to the reflections of anatase for the films deposited at 435 °C,

whereas films deposited at 500°C results in a pure rutile state according to XRD. These results are in agreement with FTIR data presented above.

Fig. 3. XRD patterns of as-deposited and annealed TiO_2 films.

Fig. 4. AFM micrograph of the sample deposited at 375 °C and annealed at 700 °C.

AFM study. Fig. 4 shows an AFM micrograph of the surface morphology of the sample deposited at 375 °C and annealed at 700 °C. The film exhibits a fine grain structure and smooth surface with a calculated root-mean-square roughness of 2.6 nm. Films prepared at higher deposition temperatures show a higher roughness value.

Ellipsometric study. Film thickness calculated for single pulse deposited films range between 110-120 nm irrespective of growth temperatures between 300-500 °C. At the same time refractive index increased from 2.1 to 2.4 with growth temperature. The film thickness and refractive index deposited at 375 °C at spray pulses of 1 to 3 are found to be 120, 224, 266 nm and 2.2, 2.3, 2.4 respectively.

Electrical study. Electrical measurements were applied to annealed films with anatase structure. The capacitance dependence vs. frequency for the TiO₂ films of different thickness deposited at substrate temperature of 375 °C are shown in Fig.5. The frequency dispersion of the capacitance can be attributed to relaxation phenomena at the film/substrate interface and to stoichiometry gradients, and have been observed in many dielectric thin films [8]. The total capacitance C_{TOT} is modelled as two capacitors connected in series, and consisting of a TiO₂ layer on top of a SiO₂ layer [9]. The dielectric constant value was calculated from the slope of fitting inverse capacitance vs. film thickness in the range of 1- 100 kHz. The effective dielectric constant was found to be 75; the capacitance of the interfacial layer was calculated to be 1 nF corresponding to an estimated SiO₂ thickness of 10 nm. The variation of leakage current density with electric field for a 120 nm film deposited at a substrate temperature of 375 °C is given in Fig.6. It can be seen that a steep increase in the current density is established even for a very low applied electric field, which is associated with high carrier injection across the titanium oxide film [1]. The current injection increases gradually with the applied electric field until local electric breakdown occured at an electric field of 250 kV/cm. The leakage current density is $6.8 \cdot 10^{-8} \text{ A/cm}^2$ at 100 kV/cm.

Fig.5. Capacitance vs. frequency for TiO₂ films deposited at 375 °C.

Fig.6. Leakage current density vs. electric field for 120 nm thick TiO_2 film deposited at 375 °C.

Conclusions

262

TiO₂ films were prepared by spray pyrolysis at different substrate temperatures. The film thickness could be controlled by the number of spray pulses. As-deposited TiO₂ films grown at temperatures below 500 °C are amorphous according to XRD. The deposition or annealing at 500 °C results in anatase phase free from contaminants. Annealing at 700 °C in air leads to crystalline anatase formation for films deposited below 400 °C. Films prepared at 435 °C and at 500 °C have a mixture of anatase - rutile and rutile, respectively. TiO₂ anatase films grown at 375 °C and annealed at 700 °C show refractive indices of 2.2- 2.4 and a rms roughness of 2.6 nm. It is shown that cost-effective spray pyrolysis method could be used to prepare TiO₂ films with effective dielectric constant of 75 at 10 kHz.

Acknowledgement

The study is supported by the Federal Ministry of Education and Research (BMBF) under the WTZ project EST 02/001 and by the Estonian Science Foundation Grant No.5612.

References

[1] L. Castaneda, J.C. Alonso, A. Ortiz, E. Andrade, J.M. Saniger, J.G. Banuelos: Mat. Chem. Phys. Vol. 9486 (2002), p. 1

[2] M. Okuya, N.A. Prokudina, K. Mushika, S. Kaneko: J. Europ. Ceram. Soc. Vol. 19 (1999), p. 903

[3] M.O. Abou-Helal, W.T. Seeber: App. Surf. Sci. Vol. 195 (2002), p. 53

[4] M.J. Alam, D.C. Cameron: J. Sol-Gel Sci. Techn. Vol. 25 (2002), p. 137

[5] Y. Djaoued, R. Taj, R. Brüning, S. Badilescu, P.V., Ashrit, G. Bader, T. Vo-Van: J. Non-Cryst. Solids Vol. 297 (2002), p. 55

[6] M. Burgos, M. Langlet: Thin Solid Films Vol. 349 (1999), p. 19

[7] O. Harizanov, A. Harizanova: Sol. Energy Mat. and Solar Cells Vol 63 (2000), p. 185

- [8] B. Babuji, C. Balasubramanian, M. Radhakrishnan: J. Non-Cryst. Solids Vol. 55 (1983), p. 405
- [9] H. Shin, M.R. De Guire, A.H. Heuer: J. App. Phys. Vol. 10, (1998), p. 3311

Functional Nanomaterials for Optoelectronics and other Applications

10.4028/www.scientific.net/SSP.99-100

Properties of TiO₂ Films Prepared by the Spray Pyrolysis Method

10.4028/www.scientific.net/SSP.99-100.259

DOI References

[2] M. Okuya, N.A. Prokudina, K. Mushika, S. Kaneko: J. Europ. Ceram. Soc. Vol. 19 (1999), p. 903
doi:10.1016/S0955-2219(98)00341-0

[3] M.O. Abou-Helal, W.T. Seeber: App. Surf. Sci. Vol. 195 (2002), p. 53 doi:10.1016/S0169-4332(02)00533-0

[7] O. Harizanov, A. Harizanova: Sol. Energy Mat. and Solar Cells Vol 63 (2000), p. 185 doi:10.1016/S0927-0248(00)00008-8

[8] B. Babuji, C. Balasubramanian, M. Radhakrishnan: J. Non-Cryst. Solids Vol. 55 (1983),
p. 405
doi:10.1016/0022-3093(83)90045-5

[9] H. Shin, M.R. De Guire, A.H. Heuer: J. App. Phys. Vol. 10, (1998), p. 3311 doi:10.1016/S1359-6454(97)00258-9